首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3148篇
  免费   4篇
  国内免费   11篇
航空   1667篇
航天技术   1076篇
综合类   9篇
航天   411篇
  2018年   36篇
  2017年   19篇
  2016年   21篇
  2014年   54篇
  2013年   77篇
  2012年   59篇
  2011年   105篇
  2010年   82篇
  2009年   112篇
  2008年   175篇
  2007年   90篇
  2006年   60篇
  2005年   77篇
  2004年   78篇
  2003年   100篇
  2002年   52篇
  2001年   99篇
  2000年   48篇
  1999年   79篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   124篇
  1994年   98篇
  1993年   66篇
  1992年   101篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   32篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1968年   16篇
  1967年   20篇
  1966年   16篇
排序方式: 共有3163条查询结果,搜索用时 265 毫秒
81.
在分析碳纤维增强碳化硅复合材料的力学性能、密度、孔隙率和弯曲强度的基础上 ,进行了超声钻孔工艺试验 ,检测并研究了材料去除率、孔径差、孔边质量和工具损耗情况 ,得出了超声钻孔是一种好的加工方法的结论。  相似文献   
82.
83.
Observability in the context of bearings-only tracking (BOT) is still the subject of important literature. Different from previous approaches, where continuous-time analysis was considered, our approach relies on discrete-time analysis. It is then shown that this allows us to use directly and efficiently the simple formalisms of linear algebra. Using the direct approach, observability analysis is essentially reduced to basic considerations about subspace dimensions. Even if this approach is conceptually quite direct, it becomes more and more complex as the source-encounter scenario complexity increases. For complex scenarios, the dual approach may present some advantages essentially due to the direct use of multilinear algebra. New results about BOT observability for maneuvering sources are thus obtained. Observability analysis is then extended to unknown instants of source velocity changes. Even if observability analysis provides thorough insights about the algebraic structure of the BOT problem, the optimization of the observer maneuvers is essentially a control problem. Basic algebraic considerations prove that a relevant cost functional for this control problem is the determinant of the Fisher information matrix (FIM). So, a large part of this work is devoted to the analysis of this cost functional. Using multilinear algebra, general approximations of this functional are given. In order to involve only directly estimable parameters, the source bearing-rates are examined. Using these approximations, a general framework for optimizing the observer trajectory is derived which allow us to approximate the optimal sequence of controls. It is worth stressing that our approach does not require the knowledge of the source trajectory parameters and is still valid for a maneuvering source.  相似文献   
84.
The application of existing estimation theory to the problem of specification and performance of passive sonar spectral estimators is considered. The classification function is addressed, so that the signal is assumed to be present, and so that the energy arrival angle is known. The spatial filter considered is a line array of M equally spaced omnidirectional hydrophones. Signal and ambient noise are both zero-mean, wide-sense, stationary Gaussian random processes that differ in their spatial correlation across the face of the array. The signal is a plane wave that can be made totally spacially corrected between array elements by inserting delays between sensors to invert the signal propagation delay. The noise correlation is a function of frequency, bandwidth, element separation, and the relative time delay between sensors. Under these assumptions, the Cramer-Rao lower bound is derived for the class of unbiased estimates of signal power in a narrow frequency band at the hydrophone in the presence of correlated ambient noise of known power. The bound is examined numerically, resulting in a threshold phenomenon with M that constitutes a new design consideration. In addition, there is a striking insensitivity to realistic values of ambient noise correlation, and there are ranges in signal-to-noise ratio for which one gains more by increasing M than by increasing the bandwidth-time product. Specific processors, including a new unbiased estimator when noise power is unknown, are developed.  相似文献   
85.
This work is concerned with binary systems that we call ‘moderately close’. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore ‘moderately close’. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an αω dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical ‘moderately close’ Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   
86.
A scheme is presented for the identification of naval vessels via active multiple-frequency radar interrogation. A major virtue of the described method is the use of a response waveform synthesized using amplitude data only. A prediction correlation using natural resonances associated with substructures on the vessels is applied to synthetically generated matched-filter response waveforms. The identification scheme is tested using measured model data for 8 vessels on a simulated sea surface. A correct identification probability of roughly 77 percent is obtained.  相似文献   
87.
This paper describes the architecture and calibration design of the experimental ground based radar station MERIC. This full-polarimetric radar is conceived for the analysis and the recognition of non cooperative aircraft in flight.We carefully study how the full-polarimetric capability is obtained for a simultaneous transmit (simultaneous transmission of two linear FM with opposite slopes) radar system, using analogue deramping with a replica.The phase distortions of the signal propagating in the four polarimetric channels are carefully estimated. We define a phase calibrating method compatible with the outdoor measurements conditions and few constraints on reference targets.We show the phase accuracy obtained with the proposed calibration method on real measurements.  相似文献   
88.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
89.
Observational evidence of the 11-year solar cycle (SC) modulation of stratosphere temperatures and winds from the ERA-40 dataset is reviewed, with emphasis on the Northern winter hemisphere. A frequency modulation of sudden warming events is noted, with warmings occurring earlier in solar minimum periods than in solar maximum periods. The observed interaction between the influence of the SC and the quasi biennial oscillation (QBO) on the frequency of sudden warmings is noted as a possible clue for understanding their mechanism of influence. A possible transfer route for the 11-year solar cycle from the equatorial stratopause region to the lowest part of the stratosphere is proposed, via an influence on sudden warming events and the associated induced meridional circulation. SC and QBO composites of zonal wind anomalies show anomalous wind distributions in the subtropical upper stratosphere in early winter. Mechanistic model experiments are reviewed that demonstrate a sensitivity of sudden warmings to small wind anomalies in this region. Various diagnostics from these experiments are shown, including EP fluxes and their divergence and also the synoptic evolution of the polar vortex, in order to understand the mechanism of the influence. Some recent GCM experiments to investigate the SC/QBO interaction are also described. They simulate reasonably well the observed SC/QBO interaction of sudden warming events and appear to support the hypothesis that tropical/subtropical upper stratospheric wind anomalies are an important influence on the timing of sudden warmings.  相似文献   
90.
Hawkins  S.E.  Roelof  E.C.  Decker  R.B.  Ho  G.C.  Lario  D. 《Space Science Reviews》2001,97(1-4):269-272
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times (∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and two events with small field-aligned gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号